Kelvin probe force microscopy in the presence of intrinsic local electric fields


Kelvin probe force microscopy in the presence of intrinsic local electric fields

Baumgart, C.; Müller, A.-D.; Müller, F.; Schmidt, H.

Kelvin probe force microscopy (KPFM) is used to investigate the electrostatic force between a conductive probe and doped semiconductors. The observed frequency dependence of the probed KPFM bias is strongly related to sample-specific intrinsic local electric fields. Equilibrium drift and diffusion of excess charge carriers at low operation frequencies influence the characteristics of the asymmetric electric dipole in the surface region of the investigated semiconductors during the KPFM measurement. The sample-specific KPFM background signal does not influence the frequency-dependent lateral variation of the electrical signal. The KPFM bias probed on doped semiconductor nanostructures with high or small enough operation frequencies allows for quantitative dopant profiling or investigation of diffusion processes in internal electric fields, respectively.

Keywords: Kelvin probe force microscopy (KPFM); Semiconductors; Dopant profiling

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15004
Publ.-Id: 15004