Influence of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba(Fe1-xCox)(2)As-2 bilayers


Influence of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba(Fe1-xCox)(2)As-2 bilayers

Iida, K.; Haindl, S.; Thersleff, T.; Haenisch, J.; Kurth, F.; Kidszun, M.; Huehne, R.; Moench, I.; Schultz, L.; Holzapfel, B.; Heller, R.

The implementation of an Fe buffer layer is a promising way to obtain epitaxial growth of Co-doped BaFe2As2 (Ba-122). However, the crystalline quality and the superconducting properties of Co-doped Ba-122 are influenced by the Fe buffer layer thickness, d(Fe). The well-textured growth of the Fe/Ba-122 bilayer with d(Fe) = 15 nm results in a high J(c) of 0.45 MA cm(-2) at 12 K in self-field, whereas a low J(c) value of 61 000 A cm(-2) is recorded for the bilayer with d(Fe) = 4 nm at the corresponding reduced temperature due to the presence of grain boundaries. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509418]

Keywords: barium compounds; buffer layers; cobalt; grain boundaries; high-temperature superconductors; iron; iron compounds; pulsed laser deposition; superconducting epitaxial layers

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15056
Publ.-Id: 15056