Why are depth profiles promising?


Why are depth profiles promising?

Braucher, R.; Bourlès, D. L.; Merchel, S.; Léanni, L.; Chauvet, F.; Arnold, M.; Aumaître, G.; Keddadouche, K.

Cosmonuclide concentrations in surface samples are function of both duration of exposure to cosmic radiation and surface stability. From the measurement of a single cosmonuclide concentration in a single surface sample, it is thus impossible to quantify simultaneously the exposure duration and the denudation rate affecting the studied object. In the case of a simple exposure history, measurements of two cosmonuclide concentrations within the same surface sample may however theoretically be used to estimate both unknowns.
A more constraining approach to accurately quantify both exposure time and denudation rate is to take advantage of the fact that the effective production attenuation length of neutrons is significantly shorter than that of muons. The neutron-induced cosmonuclide concentrations thus reach steady-state with respect to denudational loss much more rapidly than the muon induced ones. Consequently, the near-surface cosmonuclide concentrations mainly resulting from interactions with neutrons might be used to estimate the denudation rates while the several meters depth concentrations mainly resulting from interactions with muons might be used to estimate the exposure duration. A unique well constrained depth profile thus permits determination of both the exposure time and the denudation rate. In the case of abandoned material, inheritance due to previous exposition to cosmic rays can be revealed.
Multi-nuclide depth profiles are also excellent tools for better deducing the physical parameters of the particles involved in the production of these cosmogenic radionuclides. This approach has been applied twice: 1.) 10Be and 26Al along a 25 meters pure quartz core from Galicia, Spain, and 2.) 10Be, 26Al and 36Cl along a ~11 meters carbonate and quartzose conglomerates core from La Ciotat, S.E. France. Both projects confirm that the density of the material is one of the most sensitive parameters. The latter study also allows to precise the still debatable spallation production rate of 36Cl from Ca.

Keywords: accelerator mass sepctrometry

Related publications

  • Poster
    12th International Conference on Accelerator Mass Spectrometry (AMS-12), 20.-25.03.2011, Wellington, New Zealand

Permalink: https://www.hzdr.de/publications/Publ-15099
Publ.-Id: 15099