Atomic structure of ion-implanted SOI-structures with bonding interfaces


Atomic structure of ion-implanted SOI-structures with bonding interfaces

Popov, V. P.; Cherkov, A. P.; Tyschenko, I. E.; Voelskow, M.

Strong decrease in the carrier mobility of the nanometer-thick silicon films imposes a limitation on the application of Silicon-On-Insulator SOI structures in the current planar CMOS technology. The formation of heterostructures-on-insulator is a way to increase the carrier mobility in the nanometer-scale layers. We have already shown that formation of Ge/Si on SiO2 heterostructure leads to increasing of holes mobility [1]. It is known that electron mobility in bulk InSb is about 77000 cmy2/Vs. This is about 50 times more than that in bulk silicon. The formation of Si/InSb on insulator heterostructures may provide an increase of effective electron mobility in the nanometer scale SOI films. The main goal of this work was a study of nucleation and growth of monocrystalline indium antimonide thin film at the Si/SiO2 grain boundary.

Keywords: SOI; CMOS; InSb; RBS

Related publications

  • Lecture (Conference)
    Autumn School on Materials Science and Electron Microscopy 2007 "Microscopy - advanced tools for tomorrow's materials", 08.-11.10.2007, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-15352
Publ.-Id: 15352