Numerical simulations of single- and two-phase flow liquid metal model experiments of the steel casting process


Numerical simulations of single- and two-phase flow liquid metal model experiments of the steel casting process

Miao, X.; Lucas, D.; Galindo, V.; Ren, Z.; Eckert, S.; Gerbeth, G.

The LIMMCAST program at HZDR models the flow fields in mould, tundish and nozzle using low-melting liquid metals. It provides detailed flow measurements which may serve for the validation of related codes. Here we present numerical simulations using the CFX code for the influence of an electromagnetic brake on single- and two-phase flows in the mould. These simulations are done in close relation to LIMMCAST experiments. Contrary to the expectation, the local flow around the jets was intensified remarkably and lead to an asymmetric flow at the center plane in the presence of the magnetic field in case of electrically insulating mould walls. For electrically conducting walls, the jet becomes rather stable. It turns out that the electrically conducting boundary conditions have a great impact on the flow structure with the imposition of an external static magnetic field. For the two-phase case of injected argon bubbles, the model problem of a rising bubble driven flow in an external magnetic field is considered.

Keywords: continuous casting; SST turbulence model; EMBR; bubbly flow

  • Lecture (Conference)
    4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking (SteelSim), 27.06.-01.07.2011, Düsseldorf, Deutschland
  • Contribution to proceedings
    4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking (SteelSim), 27.06.-01.07.2011, Düsseldorf, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-15391