Stacked Ge nanocrystals with ultrathin SiO2 separation layers


Stacked Ge nanocrystals with ultrathin SiO2 separation layers

Zschintzsch, M.; von Borany, J.; Jeutter, N. M.; Mücklich, A.

The aim of this work is the tailored growth of Ge nanocrystals (NCs) in (GeOx/SiO2) multilayers (ML) for photovoltaic applications. For this purpose the fabrication of regularly stacked Ge NCs separated by ultrathin SiO2 layers is essential to enable charge carrier transport by direct tunnelling. In this paper we report on the fabrication of 50x(GeOx /SiO2) multilayer stacks via reactive dc magnetron sputtering and Ge NCs formation after subsequent annealing. It is shown that magnetron sputtering allows us to deposit very regular ML stacks with a total thickness of about 300 nm, characterized by ultrathin (down to 1 nm) and very smooth (roughness ∼ 0.6 nm) SiO2 separation layers. A main challenge is to keep these properties for a thermal budget necessary to form Ge NCs. For this reason, the temperature dependence of phase separation. Ge crystallization and ML morphology was investigated by Rutherford backscattering, x-ray scattering, Raman spectroscopy and electron microscopy. The formation of size confined Ge NCs of about 5 nm after annealing of only 550°C is confirmed. This low thermal budget ensures the suppression of GeO emanation and multilayer stability. Spectroscopic ellipsometry was applied to determine the optical Ge NC bandgap to (1.65 ± 0.5) eV.

Keywords: annealing; elemental semiconductors; germanium; germanium nanocrystals; nanofabrication; nanoparticles; growth; quantum confinement; quantum dots; multilayer; phase separation; Raman; phonon confinement, semiconductor growth; semiconductor thin films; silicon nanocrystals; sputter deposition; superlattices; transmission electron microscopy; tunnelling; X-ray scattering; spectroscopic ellipsometry

Related publications

Permalink: https://www.hzdr.de/publications/Publ-15840
Publ.-Id: 15840