Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor


Benzenedithiol: A Broad-Range Single-Channel Molecular Conductor

Kim, Y.; Pietsch, T.; Erbe, A.; Belzig, W.; Scheer, E.

More than a decade after the first report of singlemolecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10E-3 conductance quanta as well as with high conductance values above ∼0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.

Keywords: Single molecule; break junction; inelastic electron tunneling spectroscopy; benzenedithiol; single-level model

Permalink: https://www.hzdr.de/publications/Publ-15897
Publ.-Id: 15897