Direct determination of uranium speciation in eukaryotic cells – challenges and limitations


Direct determination of uranium speciation in eukaryotic cells – challenges and limitations

Geipel, G.; Viehweger, K.; Bernhard, G.

Application of laser-induced and time-resolved methods allow the direct determination of uranium speciation at extremely low concentrations. This behaviour can be directly observed due to the extraordinary luminescence properties of uranium-(VI).
Some examples for luminescence properties of uranium species relevant to the environment are shown. As for example carbonate species do not show any luminescence behaviour at room temperature cryogenic techniques were applied to decrease the quench processes of the excited species and to determine the uranium speciation. Change of this speciation can be observed due to a change in luminescence properties (emission wavelength and luminescence lifetime). Due to different dependence of the lifetime on temperature for the several uranium species additional luminescence measurements of the prepared solutions at room temperature and in the frozen state give more detailed information about the uranium speciation.
Contact of dissolved uranium with living cells at ambient conditions changes dramatically the uranium speciation. Besides of several organic phosphate binding forms although other uranium species were found as uranium bond to phenolic and thiol groups. Some of them do not emit any luminescence at room temperature. Nevertheless the low temperature measurements allow the assignment of species not fluorescing at room temperature, due to strong dynamic quench effects of H2O molecules and COO- groups. By use of the combined temperature dependent methods for several plant cell compartments we can now assign the uranium speciation in more detail.
Besides this plant cells provide a reducing environment in order to prevent oxidative stress. Due to the redox properties of uranium, it might be possible that uranium-(VI) in a cell matrix is reduced. By laser-induced photo-acoustic spectroscopy we were able to detect also uranium-(IV).

Keywords: Uranium; Cell compartments; speciation

  • Lecture (Conference)
    10th symposium on remediation, 03.-06.10.2011, Jena, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-16155
Publ.-Id: 16155