Fluid flow driven self-generation of magnetic fields in laboratory experiments


Fluid flow driven self-generation of magnetic fields in laboratory experiments

Giesecke, A.; Stefani, F.; Gerbeth, G.

Cosmic magnetic fields are ubiquitous phenomena that are intrinsically coupled to most astrophysical objects like planets, stars or galaxies. The origin of these fields involves the formation of electrical currents by means of a complex flow of a conducting fluid or plasma.This process, the so called dynamo effect, is necessarily three dimensional and non-linear which makes an analytical or numerical approach difficult.

Meanwhile, fluid flow driven generation of magnetic fields has also been obtained in laboratory experiments providing a complementary tool to astronomical observations or direct numerical simulations. However, whereas astrophysical dynamo action is comparably easy because of the large dimensions of the involved flows, its experimental realization requires considerable technical efforts. So far only three experiments have been able to demonstrate fluid flow driven self-excitation of magnetic fields.

I will briefly summarize the essential outcome of the seminal experiments conducted in Riga and in Karlsruhe which have demonstrated the principal possibility of the magnetic field generation process and its saturation. I will further discuss recent results of the French Von-Karman-Sodium dynamo that are still not completely understood, e.g. the dominance of the axisymmetric field or the exclusive occurrence of dynamo action when soft iron impellers are used to drive the flow.

Further progress in the experimental examination of dynamo action is expected from the future dynamo facility that is scheduled at the Helmholtz-Zentrum Dresden-Rossendorf. The DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN), which is presently in the design phase, will comprise a number of large scale liquid sodium experiments devoted to problems of geo- and astrophysical magnetohydrodynamics. A homogeneous dynamo, driven exclusively by precession, will represent the most ambitious compound of DRESDYN. Another experiment, a sodium filled Taylor-Couette cell, will allow the combined investigation of various versions of the magnetorotational instability and of the Tayler instability. For both experiments, recent results of preparatory studies are presented, and the scientific prospects for the final set-ups are delineated.

Keywords: dynamo

  • Lecture (Conference)
    Plasma Physics Symposium, 24.-25.05.2012, Bochum, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-17152