Ge quantum dot lattices in Al2O3: a material with excellent mechanical and size-tuneable optical properties


Ge quantum dot lattices in Al2O3: a material with excellent mechanical and size-tuneable optical properties

Buljan, M.; Radić, N.; Ivanda, M.; Bogdanović-Radović, I.; Karlušić, M.; Grenzer, J.; Prucnal, S.; Dražić, G.; Pletikapić, G.; Svetličić, V.; Jerčinović, M.; Bernstorff, S.; Holy, V.

In this article we show how to produce materials consisting of regularly ordered Ge quantum dots in amorphous alumina matrix with the controllable Ge quantum dot size, shape, spacing, crystalline structure and degree of regularity in the Ge quantum dot ordering. The production of such materials is achievable already at room temperature by magnetron sputtering deposition of a (Ge+Al2O3)/Al2O3 multilayer. The materials show large, size-dependent blueshift of the photoluminescence peak and enhancement in the oscillator strength caused by confinement effects. The materials also show advanced mechanical properties due to alumina matrix, and their internal structure is shown to be highly resistive to irradiation with energetic particles for a large range of the irradiation parameters. The reported materials have excellent potential for application in demanding environments for light harvesting.

Keywords: nano cluster; GISAXS

Related publications

Permalink: https://www.hzdr.de/publications/Publ-17317
Publ.-Id: 17317