Post-deposition flash-lamp annealing of high-k materials


Post-deposition flash-lamp annealing of high-k materials

Lehmann, J.; Mücklich, A.; von Borany, J.; Skorupa, W.; Schäfer, A.; Schubert, J.; Mantl, S.

In an advanced CMOS technology millisecond annealing methods such as flash lamp annealing (FLA) may play an important role [1]. For this reason, we did study the effects of FLA on actual and possible future high-k materials such as HfO2 or LaLuO3. HfO2 is already used in the industry while LaLuO3 is interesting as a possible replacement, because of its thermally stable (~1000°C) amorphous state with a k-value of 32 as well as its large bandgap of 5.2 eV and symmetrical band offsets of 2.1 eV [2].
TiN-capped and uncapped samples were annealed under different conditions with pulse durations ranging from 1 to 20 ms and peak temperatures up to 1300°C. The microstructure was investigated by electron microscopy, XRD and nuclear methods (RBS, ERD) Current-voltage and capacitance-voltage measurements helped to characterize the electrical properties. It was found that metal-oxide semiconductor capacitors containing LaLuO3 can profit from FLA because the oxide remains amorphous and the capacitance is increased. In case of HfO2 the capacitance is decreased and the oxide crystallizes.

References:

[1] J. C. Gelpey, S. McCoy, D. Camm and W. Lerch, Mater. Sci. Forum 573-574, 257 (2008)
[2] J. Lehmann, N. Shevchenko, A. Mücklich, J.v. Borany, W. Skorupa, J. Schubert, J.M.J. Lopez, S. Mantl, Microelectron. Eng. 88, 1346 (2011)

Keywords: high-k; ternary rare earth oxides; flash-lamp annealing

Related publications

  • Lecture (Conference)
    E-MRS 2012 SPRING MEETING, 14.-18.05.2012, Strassbourg, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-17329
Publ.-Id: 17329