Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions


Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions

Rudolph, M.; Peuker, U. A.

A study is presented, where agglomerated magnetite nanoparticles with a crystallite size of 15 nm are transferred from water to an immiscible organicphase and tend to deagglomerate under certain conditions using different types of chemically adsorbing fatty acid. It is shown that the longer fatty acids lead to more stable dispersions and for the longest fatty acids, the functionality of the molecules defines stability with best results for ricinoleic acid. The disjoining force as a function of the brush layer thickness and adsorption density is calculated with a physical modelapplying the well-established Alexander de Gennes theory. We further investigate the colloidal stability of the transferred and stabilized magnetite nanocrystals in polymer solutions of destabilizing PMMA and stabilizing PVB. A DLVO-like theory presents the governing attractive and repulsive interactions for the case of destabilizing non-adsorbing polymers. The theory can be used to explain the influencing parameters in a mixture of sterically stabilized nanoparticles in an organic solvent based solutionofpolymercoils.Finally,by spray drying, we produce polymer–nanoparticle composite microparticles. Based on BET, laser diffraction and backscatter electron SEM measurements, we draw conclusions on the nanoparticle distribution within the composite in correlation with the stability investigations.

Keywords: Disjoining force; Peptization; Resuspension; Depletion; Fatty acids; Polymer; Solvents; Magnetite; Steric interactions; Solubility distance; DLVO; Non-DLVO; Nanocomposites

Permalink: https://www.hzdr.de/publications/Publ-17476
Publ.-Id: 17476