Radiation based tomography for multiphase flow


Radiation based tomography for multiphase flow

Hampel, U.

Multiphase flows are widely found in many fields of science, engineering, and industry. Examples are mineral oil processing, chemical reaction engineering, and nuclear thermal hydraulics. Measurement and visualisation of multiphase flows is therefore of high scientific and engineering relevance. In particular the development and validation of multiphase CFD models requires measurement data from flow scenarios with high spatial and temporal resolution.
Since multiphase flows are complex in space and time, high-resolution imaging modalities are needed as measurement tools. Unfortunately, multiphase flow research made only partial benefit from the recent tremendous progress in optical, laser and ultrasound based measurement techniques, because of the opaqueness of such flows for light and sound. Especially radiation based tomographic methods are therefore being considered as the key technology for multiphase flow visualisation. However, to date only few methods are suited because of the stringent requirements for high spatial and temporal resolution. In particular, methods are sought, which can visualize multiphase flow in complex geometries, within vessels with opaque walls and inserts, such as chemical reactors, heat exchangers or fuel rod assemblies, but also porous media of fixed bed reactors or rock samples. The presentation now will give an introduction to the recent progress in radiation based tomographic imaging techniques for multiphase flow measurement and discuss their particular role with respect to CFD code development.

Keywords: multiphase flow measurement techniques; tomography

  • Invited lecture (Conferences)
    7th OpenFOAM® Workshop, 25.-28.06.2012, Darmstadt, Germany

Permalink: https://www.hzdr.de/publications/Publ-17548
Publ.-Id: 17548