Flow measurements in a model of the Czochralski crystal growth process


Flow measurements in a model of the Czochralski crystal growth process

Pal, J.; Cramer, A.; Gerberth, G.

An experimental study of the buoyancy-induced flow in a model of a Czochralski crystal growth system was conducted. Ultrasonic velocimetry was used to measure fluid velocities. To have similar thermal boundary conditions as in an industrial growth facility, a double walled glass crucible flown through by a heating fluid was chosen to hold the fluid. Similarity of the heat transfer conditions was achieved by selecting a liquid metal as the fluid under investigation, which was the ternary alloy GaInSn having a Prandtl number of 0.021. Because of the double-walled crucible, measurements through the container wall are difficult if ever possible. Since the availability of relatively short ultrasonic transducers it is practicable to have the sensor immersed into the fluid. Measurements of the radial velocity component shortly below the melt surface across the entire diameter of the crucible at various azimuthal angles reveal the complex flow structure of natural convection in a Czochralski crucible. As it is not to be expected to grow high quality mono-crystalline crystals from such a non-axisymmetric flow, rotating magnetic fields (RMF) are often proposed to render the flow more axisymmetric. This paper also addresses the question what happens to the buoyancy-driven flow when such an RMF is applied.

Keywords: Czochralski crystal growth; Rayleight-Benard convection; ultrasonic flow measurement; magnetohydrodynamics; electromagnetic stirring

  • Contribution to proceedings
    8th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering ISUD8, 19.-21.09.2012, Dresden, Deutschland
    Flow measurements in a model of the Czochralski crystal growth process
  • Lecture (Conference)
    8th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering ISUD8, 19.-21.09.2012, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-17711
Publ.-Id: 17711