CMOS integrated antenna-coupled field-effect-transistors for the detection of radiation from 0.2 to 4.3 THz


CMOS integrated antenna-coupled field-effect-transistors for the detection of radiation from 0.2 to 4.3 THz

Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevičius, L.; Kašalynas, I.; Valušis, G.; Krozer, V.; Mittendorff, M.; Winnerl, S.; Roskos, H. G.

Using 150-nm CMOS process technology, various patch antenna coupled detectors have been implemented with different antenna resonance frequencies spanning from 0.2 to 4.3 THz.. These devices employ self-mixing in n-channel field-effect transistors and operate well above the transistors’ cutoff frequency. Detector designs are based on a novel concept which couples the signal to the drain, which facilitates detection also at electronic frequencies applicable to e. g. device calibration. The theoretical description of device operation by Dyakonov and Shur is extended to include the new boundary conditions and any gate bias. Additionally device impedance, responsivity and noise equivalent power are considered. The different transport regimes (i.e. quasi-stationary (QS), distributed resistive and plasmonic mixing) and their transitions are theoretically discussed and experimentally accessed. Responsivity values of 1344 V/W at 585 GHz, 90 V/W at 3.1 THz and 11 V/W at 4.3 THz are reported. At 0.585 THz we report the optical noise-equivalent-power (NEP) of 13 pW/√Hz at optimum gate bias and at 3.1 THz of 163 pW/√Hz. Under ideal 0.585 THz coupling conditions and room temperature operation, a NEP as low as 2 pW/√Hz is predicted. All values are normalized to the physical antenna area.

Keywords: Submillimeter wave detectors; Terahertz detectors; patch antennas; CMOS; terahertz direct detection; distributed resistive self-mixing; plasmonic detection

Related publications

Permalink: https://www.hzdr.de/publications/Publ-17880
Publ.-Id: 17880