A new database on interfacial area density obtained from wire-mesh sensor measurements


A new database on interfacial area density obtained from wire-mesh sensor measurements

Lucas, D.; Beyer, M.

Interfacial Area Density (IAD) is an important parameter for modeling two-phase flows with mass transfer. Condensation and evaporation rates in dynamic flows are proportional to this parameter. While system codes have to reflect the evolution of the IAD along the flow path, the qualification of CFD-codes requires the detailed information on the three-dimensional distributions. Wire-mesh sensors, which enable the identification of the local phase distribution in gas-liquid flows basing on high frequency conductivity measurements, are widely used for the determination of two-phase flow characteristics in pipes. Basing on the method proposed by Prasser, now an improved algorithm was developed to obtain the interface of the single bubbles and gas structures as well as the local IAD from wire-mesh sensor data. The paper briefly describes the new algorithm, but mainly focusses on the extension of the data-base obtained by the application of this algorithm on a comprehensive experimental test series for adiabatic air-water flows. The experiments were done using a 8 m long pipe with an inner diameter of 195.3 mm. The extended database now besides radial gas volume fraction profiles, radial gas velocity profiles bubble size distributions and differential gas volume fraction in dependence on the bubble size and the radial position includes also detailed data on the space and bubble size dependent IAD.

Keywords: interfacial aera; wire-mesh; database; pipe flow

  • Contribution to proceedings
    The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15, 12.-15.05.2013, Pisa, Italy
    paper NURETH15-101
  • Lecture (Conference)
    The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15, 12.-15.05.2013, Pisa, Italy

Permalink: https://www.hzdr.de/publications/Publ-18030
Publ.-Id: 18030