Driving magnetization dynamics via mid-infrared phonon excitation


Driving magnetization dynamics via mid-infrared phonon excitation

Mährlein, S.; Radu, I.; Gensch, M.; Kimel, A.; Kalashnikova, A.; Kampfratth, T.; Wolf, M.

The fundamental interactions between electrons, spins and the lattice of a solid have always been subject of large scientific interest. Here, we investigate the coupling between phonons and the ordered spin system of ferrimagnetic oxides on ultrashort time scales, an elusive and actively debated issue of modern ultrafast magnetism.
For this purpose, we use intense electromagnetic pulses at terahertz (THz) frequencies, from both table-top and accelerator-based sources, to resonantly excite a specific phonon mode. The impact of this vibrational excitation on the spin system is monitored by detecting the transient Faraday rotation of a subsequently arriving optical probe pulse. As such, we obtain access to the magnetization dynamics with a time resolution of down to 10fs.
These mode-selective pumping experiments show a response of the spin system on a timescale of few picoseconds and thus indicate an (ultra)fast spin-lattice interaction. The possible underlying coupling mechanisms will be discussed.

Related publications

  • Poster
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), 10.-15.03.2013, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-18078
Publ.-Id: 18078