Magnetic and Structural Properties of Equiatomic FeRh thin films


Magnetic and Structural Properties of Equiatomic FeRh thin films

Heidarian, A.; Potzger, K.; Lindner, J.; Heller, R.; Wilhelm, R.; Grenzer, J.; Reuther, H.; Bali, R.

Equiatomic FeRh thin films with varying thickness have been prepared on MgO (100) substrates via molecular beam epitaxy (MBE). The optimization of the stoichiometry was monitored using XRD, RBS and AES while the magnetic properties were probed using SQUID magnetometry. XRD results evidence a well ordered CsCl-type crystal structure. By increasing the annealing temperature of the films, the structural quality of the films also increases. Moreover, the known first order phase transition at ~350 K from an antiferromagnetic (AF) to a ferromagnetic (FM) state slightly shifts towards higher temperatures. M-H loops of films annealed at 800 ∘C or 850 ∘C recorded at 300 K show an opening, which is likely related to the magnetic field-induced AFM-FM phase transition. Residual low-temperature ferromagnetic moments are of unknown origin, but likely related to strain or diffusion effects at the surface or interface.

Keywords: FeRh thin films; Magnetic properties; Lattice structure; SQUID

Related publications

  • Poster
    The IEEE Magnetics Society Summer School, 09.-14.06.2013, Assisi, Italy
  • Poster
    Joint European Magnetic Symposia (JEMS 2013), 25.-30.08.2013, Rhodes, Greece
  • Lecture (Conference)
    Deutsche Physikalische Gesellschaft (DPG 2014), 30.03.-04.04.2014, Dresden, Germany
  • Lecture (Conference)
    IEEE International Magnetics Conference (INTERMAG 2014), 04.-08.05.2014, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-19129
Publ.-Id: 19129