Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis


Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

Hannaske, R.; Bemmerer, D.; Beyer, R.; Birgersson, E.; Ferrari, A.; Grosse, E.; Junghans, A. R.; Kempe, M.; Kögler, T.; Kosev, K.; Marta, M.; Massarczyk, R.; Matic, A.; Schilling, K.-D.; Schramm, G.; Schwengner, R.; Wagner, A.; Yakorev, D.

At energies relevant to Big Bang nucleosynthesis there is only scarce experimental data for the reaction p(n,gamma)d. Its reaction rate used in nuclear network calculations relies on theoretical models constrained by nucleon-nucleon scattering data, the capture cross section for thermal neutrons and experimental data of the photodissociation of the deuteron d(gamma,n)p, which as well is investigated sparsely at Big-Bang energies. Large experimental uncertainties make a comparison of measurements with precise theoretical calculations difficult.
We have studied the reaction d(gamma,n)p at the superconducting electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf using bremsstrahlung with an endpoint energy of 5.0 MeV. The target consisted of alternating layers of aluminum and deuterated polyethylen. Nuclear-resonance-fluorescence spectroscopy on 27Al with high-purity Germanium detectors allowed us to measure the photon flux at 2.2 and 3.0 MeV. ELBE offers a pulse length of some ps and an adjustable repetition rate making time-of-flight experiments even at a small flight path of 1 m possible. Neutrons with a kinetic energy from 20 to 1400 keV have been measured with six 1-meter-long plastic scintillators read out on two sides by high-gain photomultipliers.
Interactions of the emitted neutrons with components of the experimental setup (target, detectors, collimators, beam dump, walls) have a non-negligible influence and have been simulated using the FLUKA code. In combination with the neutron detection efficiency, which was experimentally determined at Physikalisch-Technische Bundesanstalt Braunschweig, we calculated a time-of-flight-dependent correction factor to the measured neutron spectrum.
We will present the experimental setup, the data analysis, the results of the simulation and the cross section.

Keywords: Big Bang nucleosynthesis; bremsstrahlung; gamma-ray spectroscopy; neutron time-of-flight; nuclear astrophysics; photon scattering; neutron detector; efficiency; FLUKA

Related publications

  • Lecture (Conference)
    Nuclear Physics in Astrophysics VI, 19.-24.05.2013, Lisbon, Portugal
  • Open Access Logo Journal of Physics: Conference Series 665(2016), 012003
    DOI: 10.1088/1742-6596/665/1/012003

Permalink: https://www.hzdr.de/publications/Publ-19201
Publ.-Id: 19201