Radiative Particle-in-Cell Simulations: Shedding new Light into the Dynamics of Laser-plasma interactions


Radiative Particle-in-Cell Simulations: Shedding new Light into the Dynamics of Laser-plasma interactions

Debus, A.; Pausch, R.; Steiniger, K.; Hübl, A.; Burau, H.; Widera, R.; Kluge, T.; Schramm, U.; Cowan, T. E.; Bussmann, M.; Schneider, B.; Grottel, S.; Schmitt, F.; Hönig, W.; Juckeland, G.; Nagel, W.

We present recent results using PIConGPU, a fully relativistic 3D particle-in-cell (PIC) code running on GPU clusters. We extended our code to compute the radiation spectra of all particles in the simulation based on classical Liénard-Wiechert potentials including full coherence and polarisation properties. We discuss implementation, physics tests, scaling and show simulation results of laser-wakefield accelerator and astrophysical plasmas, for which we calculated the angularly resolved spectra ranging from infrared to X-ray wavelengths.

Such an extensive treatment of plasma radiation across billions of macro particles makes it possible to explore temporally resolved plasma radiation spectra on linear and logarithmic photon energy scales over large solid angles ("sky-maps").
This ability of obtaining quantitative spectral data in plasma simulations poses a unique tool for determining the phase space distribution of electrons. Since spectral information is readily accessible in experiments, our results can serve as a valuable input to new diagnostics.

For the petaflop perfomance scaling of PIConGPU on the Oak Ridge TITAN cluster we use a scenario of the Kelvin-Helmholtz instability including radiation. Furthermore, we demonstrate the usefulness of the live 3D visualisation feature of PIConGPU for accessing running simulations.

Keywords: HPC; plasma radiation; particle-in-cell simulation; petaflop; 3D live visualization; Kelvin-Helmholtz instability; Laser-wakefield accelerator

  • Invited lecture (Conferences)
    23rd International Conference on Numerical Simulation of Plasmas (23rd ICNSP), 14.-16.9.2013, Beijing, China

Permalink: https://www.hzdr.de/publications/Publ-19222
Publ.-Id: 19222