Nanopatterning of semidonductor surfaces by ion beam irradiation


Nanopatterning of semidonductor surfaces by ion beam irradiation

Ou, X.; Keller, A.; Helm, M.; Fassbender, J.; Facsko, S.

Periodic semiconductor nanostructure arrays have the potential for nanoelectronic and optoelectronic application. Besides the conventional low efficiency lithographic techniques broad ion beam irradiation is a simple and potentially mass productive technique to fabricate nanostructure patterns on semiconductor surfaces.[1] Based on a “self-organized” erosion process, periodic ripple, hole, or dot arrays can be produced on various semiconductor surfaces. Moreover, an array of isolated nanostructures on insulator substrate can be fabricated by ion beam erosion of a thin Si or Ge layer deposited on insulator and precisely stopping the sputtering as soon the nanopattern meets the interface of the buried oxide layer.[2]
However, the main drawback of this method is that the irradiated semiconductor surfaces are amorphized. In this work we report the recent discovery of single crystal Ge nanopattern formation based on a “reverse epitaxy” process.[3] The vacancies created during ion beam irradiation distribute according to the crystallographic anisotropy, which results in an orientation-dependent pattern formation on single crystal Ge surface. The formation of these patterns is interpreted as the result of a surface instability due to an Ehrlich-Schwoebel barrier for ion induced surface vacancies. The simulation of the pattern formation is performed by a continuum equation accounting for the effective surface currents.

[1] Stefan Facsko et al. Science 285, 1551 (1999).
[2] Xin Ou et al., AIP Advances, 1, 042174 (2011).
[3] Xin Ou et al., Physical Review Letters 111, 016101 (2013).

Keywords: nanopatterning

Related publications

  • Invited lecture (Conferences)
    International Conference on Nanostructuring by Ion Beams, 23.-25.10.2013, Jaipur, India

Permalink: https://www.hzdr.de/publications/Publ-19577
Publ.-Id: 19577