Gas-Liquid Distribution in Tubular Reactors with Solid Foam Packing


Gas-Liquid Distribution in Tubular Reactors with Solid Foam Packing

Mohammed, I.; Bauer, T.; Schubert, M.; Lange, R.

Solid foam catalysts are a potential replacement for conventional catalyst particles such as extrudates, tablets, hollow cylinders and spheres. They improve the fixed-bed reactor performance in gas-liquid-solid reactions due to their high specific surface area and low pressure drop. Furthermore foam has very narrow residence time distribution which enhances the selectivity. However, there is still a lack of knowledge on the evolving flow patterns in solid foams and the proper design of liquid-phase distributors for industrial applications and conditions. In our contribution, gas-liquid distribution of downward two-phase flow with solid foam packings was studied experimentally. The packings varied in solid foam pore density.
The measurements in a column with 0.1 m inner diameter are based on a combination of a segmented collector (25 compartments of same size) and imaging wire-mesh sensors with 16×16 wires and a pixel resolution of 6.25 mm. Both techniques provided the same results regarding the quality assessment of the flow distribution. The setup was applied to investigate the effect of: different liquid distributors, gas and liquid flow rates, and pre-wetting conditions. The experiments revealed information on liquid spreading along the reactor axis. The flow patterns inside the column are quantified by a maldistribution factor. The results indicate that foam packings cannot effectively counterbalance initial liquid maldistribution. Based on this study results, the design of packed-bed reactors can be improved towards much higher productivity and energy efficiency.

  • Poster
    9th World Congress of Chemical Engineering, 19.-22.08.2013, Seoul, South Korea

Permalink: https://www.hzdr.de/publications/Publ-19815
Publ.-Id: 19815