Evaluating the Gilbert damping in individual Co2Mn0.6Fe0.4Si microstructures via parametric amplification


Evaluating the Gilbert damping in individual Co2Mn0.6Fe0.4Si microstructures via parametric amplification

Sebastian, T.; Brächer, T.; Pirro, P.; Kawada, Y.; Naganuma, H.; Serga, A. A.; Oogane, M.; Ando, Y.; Hillebrands, B.

Recent experiments on spin dynamics in microstructures made of the Heusler compound Co2Mn0.6Fe0.4Si (CMFS) yielded promising results in the linear and nonlinear regime. These results were attributed to the low Gilbert damping that was observed with standard ferromagnetic resonance (FMR) technique on homogeneous thin films. However, a quantitative analysis of the damping in CMFS microstructures is still lacking. We present an alternative method to evaluate the damping in individual CMFS microstructures using parametric amplification and show that the low damping is preserved on the microscale.

Keywords: spin dyanmics; magnetooptics; Gilbert damping; Heusler compounds

  • Poster
    DPG Frühjahrstagung 2014, 30.03.-04.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20217
Publ.-Id: 20217