Correction of scan time dependence of standard uptake values in oncological PET


Correction of scan time dependence of standard uptake values in oncological PET

van den Hoff, J.; Lougovski, A.; Schramm, G.; Maus, J.; Oehme, L.; Petr, J.; Beuthien-Baumann, B.; Kotzerke, J.; Hofheinz, F.

Background

Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [18F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV.
Methods

Assuming irreversible FDG kinetics, SUR is linearly correlated to Km (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the `Patlak time?) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three `static scans? at T = 20, 35, and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at 78.1 ? 15.9 min p.i.) served as the reference, and the uptake values from the second scan (acquired 39.2 ? 9.9 min later) were corrected accordingly and compared to the reference.
Results

For the dynamic data, the observed difference between uncorrected values and values at reference time was (?52 ? 4.5)% at T = 20 min and (?31 ? 3.7)% at T = 35 min for SUR and (?30 ? 6.6)% at T = 20 min and (?16 ? 4)% at T = 35 min for SUV. After correction, the difference was reduced to (?2.9 ? 6.6)% at T = 20 min and (?2.7 ? 5)% at T = 35 min for SUR and (1.9% ? 6.2)% at T = 20 min and (1.7 ? 3.3)% at T = 35 min for SUV. For the DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ? 11)% and (24 ? 8.4)%, respectively. After correction, these differences were reduced to (2.6 ? 6.9)% and (?2.4 ? 7.3)%, respectively.
Conclusion

If FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at different times post injection.

Permalink: https://www.hzdr.de/publications/Publ-20239
Publ.-Id: 20239