Nanocrystallisation of III-V compound semiconductors in Si by ion beam implantation and thermal annealing


Nanocrystallisation of III-V compound semiconductors in Si by ion beam implantation and thermal annealing

Wutzler, R.; Rebohle, L.; Prucnal, S.; Bregolin, F.; Helm, M.; Skorupa, W.

III-V integration into Si is a milestone in the future development of micro- and optoelectronics. Based on SiO2 capped silicon and silicon-on-insulator (SOI) substrates, we fabricated various III-V compound semiconductor nanocrystals (NCs) in Si by high fluence ion beam implantation and short-time annealing. Due to implantation, the surrounding Si material is amorphized. Recrystallization and III-V NC growth by liquid phase epitaxy are achieved through millisecond flash lamp annealing (FLA). By using lithographically patterned cover layers during implantation we were able to obtain single-crystalline GaAs, GaP, InAs, and InP NCs at defined positions.

For the investigation of the microstructure, transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM) and Rutherford Backscattering (RBS) spectroscopy have been performed. Raman measurements confirmed the formation of III-V NCs within the recrystallized Si matrix; TEM images show distinct, single-crystalline NCs of various shapes. Depending on the processing conditions, shape and size range from large dome-like structures over spherical precipitates to nano-pyramids. AFM and RBS were used to control and monitor the fabrication process.

Keywords: Ion Implantation; Flash Lamp Annealing; III-V integration; SOI; heterojunction

Related publications

  • Lecture (Conference)
    E-MRS 2014 Spring Meeting, 26.-30.05.2014, Lille, France

Permalink: https://www.hzdr.de/publications/Publ-20442
Publ.-Id: 20442