Different Countermeasures of Electron Amplification in the Photocathode Unit


Different Countermeasures of Electron Amplification in the Photocathode Unit

Tafa Tulu, E.; van Rienen, U.; Arnold, A.

Superconducting radio frequency (SRF) structures may be subjected to electron multipacting (MP). The electrons emitted from one of the structure’s wall under certain conditions are accelerated by the RF field, thereby they may impact the wall again based on the field pattern in the structure. Accordingly the number of electrons increases exponentially caused by secondary electron emission. The latter depends on the secondary emission coefficient of the surface material and the electron trajectory in the device under study. This phenomenon limits the accelerating gradient in the cavity, moreover, it might cause an impair of RF components and distortion of the RF signal. Therefore, there should be an efficient countermeasure to suppress MP in order to boost the performance of the SRF gun. In this paper, three techniques of suppression of MP from the vicinity of the cathode, such as DC-bias, geometric modification and the microstructure of the cathode's surface, in the Rossendorf SRF gun are presented. The simulation has been done using CST Microwave Studio® and CST Particle Studio®. Eventually, the efficient suppression method would be chosen for this particular case.

Keywords: SRF gun; multipacting; electron source

Involved research facilities

Related publications

  • Open Access Logo Contribution to proceedings
    5th International Particle Accelerator Conference IPAC’14, 15.-20.06.2014, Dresden, Deutschland
    Different Countermeasures of Electron Amplification in the Photocathode Unit
  • Poster
    5th International Particle Accelerator Conference IPAC’14, 15.-20.06.2014, Dresden, Deutschland

Downloads

Permalink: https://www.hzdr.de/publications/Publ-20585