Numerical simulations of two-phase stratified turbulent flow in a channel


Numerical simulations of two-phase stratified turbulent flow in a channel

Apanasevich, P.; Lucas, D.; Sato, Y.; Ničeno, B.

The main goal of the current research project is numerical investigation of steam condensation on a subcooled water interface. The Direct Numerical (DNS) and Large Eddy Simulation (LES) methods are used to study physical mechanisms determining the interfacial heat and mass transfer. The paper presents a part of this work that deals with the evaluation of the Sub-Grid Scale (SGS) modeling within the LES framework. For that purpose two simulations of a stratified turbulent counter-current steam-water flow in a channel were conducted using the Wall-Adapting Local Eddy-Viscosity (WALE) SGS model. To exclude the phase change and to focus on the turbulence in the vicinity of the interface, both phases were assumed to be at saturation tem-perature. The simulations have shown that the variation of the WALE model constant has a significant influence on the mean velocity and velocity fluctuations and should be calibrated using the DNS data. It was also shown that the deformable steam-water interface has a strong damping effect on the near-interfacial turbulent field in the liquid phase.

Keywords: Computational fluid dynamics; free surface flows; large eddy simulation; turbulent flows

  • Contribution to proceedings
    2nd International Symposium on Multiscale Multiphase Process Engineering (MMPE2014), 24.-27.09.2014, Hamburg, Deutschland
    2nd International Symposium on Multiscale Multiphase Process Engineering
  • Poster
    2nd International Symposium on Multiscale Multiphase Process Engineering (MMPE2014), 24.-27.09.2014, Hamburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20673
Publ.-Id: 20673