Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides


Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

Cherkouk, A.; Liebe, M.; Lütke, L.; Moll, H.; Stumpf, T.

The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g., clay, salt) and if these microorganisms can influence the performance of a repository.
Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g., 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes.
Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7) [1].
Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS).
The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  • Poster
    Key topics on deep geological disposal, 24.-26.09.2014, Köln, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20722
Publ.-Id: 20722