Cooling of Bunched Relativistic Ion Beams using a CW Laser with a Frequency Scanning Range Greater than the Bucket Acceptance


Cooling of Bunched Relativistic Ion Beams using a CW Laser with a Frequency Scanning Range Greater than the Bucket Acceptance

Bussmann, M. H.; Schramm, U.; Seltmann, M.; Siebold, M.; Beck, T.; Birkl, G.; Rein, B.; Tichelmann, S.; Walther, T.; Dimopoulou, C.; Giacomini, T.; Kozhuharov, C.; Kühl, T.; Litvinov, Y. A.; Lochmann, M.; Nörtershäuser, W.; Nolden, F.; Sanchez Alarcon, R. M.; Sanjari, M. S.; Steck, M.; Stöhlker, T.; Ullmann, J.; Winters, D. F. A.; Ma, X.; Wen, W. Q.; Zhang, D.

With new, all solid-state cw laser sources cooling of relativistic ion beams with a large momentum spread has become possible. We present results on laser cooling of relativistic C3+ ion beams at the Experimental Storage Ring at GSI. In the experiment we used a frequency-quadrupled external-cavity diode laser for scanning over a relative ion momentum spread of dp/p ~ 10-5. We could show that laser cooling with such a system is almost independent of beam current and that the momentum spread reached for various bunching harmonics, bucket depths and beam currents always was found to be comparable to the resolution of the resonant Schottky pickup at ESR. We further found a decrease in Schottky power with decreasing momentum spread and that cooling times were only limited by the scanning time of the laser. The laser cooling technique presented here is of great interest for future heavy ion storage rings as it allows to address ion beams with an initially large momentum spread, thus not requiring initial electron cooling.

Keywords: laser cooling; ion beams; relativistic; esr; fair

Related publications

  • Poster
    5th International Particle Accelerator Conference, 15.-20.06.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20790
Publ.-Id: 20790