Extremely High Energy Density Deposition by Heavy Polyatomic Ion Impacts – Surface Nanopatterning and Frozen Phase Diagram Pathways


Extremely High Energy Density Deposition by Heavy Polyatomic Ion Impacts – Surface Nanopatterning and Frozen Phase Diagram Pathways

Böttger, R.; Heinig, K.-H.; Bischoff, L.; Anders, C.; Urbassek, H. M.; Hübner, R.; Liedke, B.

Bi and Au ions of a few tens of keV deposit a high energy density into the collision cascade volume of due to (i) their high mass and (ii) their low projected range. At higher energies, this density becomes diluted as the cascade volume increases super-linearly with ion energy.
Compared to monatomic ions, polyatomic ions deposit a much higher energy density. This is sufficient to form a pool of a localized, almost classical melt in a semiconductor surface lasting up to half of a nanosecond. Local melting and resolidification by single polyatomic ion impacts is proven by molecular dynamics calculations.
Well-ordered, self-organized dot patterns on Si and Ge surfaces have been found after heavy polyatomic ion irradiation, which can be attributed to the impact-induced local transient melting. The kinetics of localized melt pools leads to a generic, Bradley-Harper-type partial differential equation for the surface evolution. Whereas so far the mechanisms of ion-induced surface pattern evolution are assumed to be surface curvature dependent ion erosion or ion-momentum-induced mass drift of surface atoms, for heavy polyatomic ions we have identified a completely different mechanism.
The local melting and quenching process is so far from equilibrium that particularities of phase diagrams like the Bi state in Si or Ge are frozen into the nanostructure of the resolidified volume. This opens the possibility to study extremely fast solid-liquid phase transitions.

Keywords: self-organization; nanopatterning; polyatomic ions; energy deposition

Related publications

  • Lecture (Conference)
    Workshop Ionenstrahlen & Nanostrukturen, 20.-22.07.2014, Paderborn, Deutschland
  • Lecture (Conference)
    19th International Conference on Ion Beam Modification of Materials, 14.-19.09.2014, Leuven, Belgium

Permalink: https://www.hzdr.de/publications/Publ-21053
Publ.-Id: 21053