Apparatus for In-situ Defect Analysis (AIDA)


Apparatus for In-situ Defect Analysis (AIDA)

Liedke, M. O.; Anwand, W.; Butterling, M.; Potzger, K.; Heidarian, A.; Bali, R.; Wagner, A.

A unique high vacuum system combining material evaporation and ion beam modication with positron annihilation spectroscopy (PAS) has been developed and installed in the Helmholtz-Zentrum Dresden-Rossendorf. The in-situ system is capable to perform Doppler broadening spectroscopy as well as resistometry (4 point probe). It is an end station of the Slow-Positron System of Rossendorf (SPONSOR) that provides a mono-energetic positron beam pre-accelerated in the range of 80 eV to 35 keV thus enabling sample depth proling. The main focus of studies is the in-situ modication (during growth, ion irradiation, cooling/annealing) and the analysis of open volume defects and the chemical environment in thin lms of, e.g., memristive oxides or metal alloys. First results on the FeAl ion irradiation/annealing driven magnetic phase transition between the paramagnetic and ferromagnetic state as a function of the open volume defects will be shown. The project is nanced by the Impuls- und Vernetzungsfonds of the Helmholtz Association (code VH-VI-442).

Keywords: MBE; ion irradiation; evaporation; annealing; FeAl; transition metals; sheet resistance

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung (DPG Spring Meeting) 2014, 30.03.-04.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21637
Publ.-Id: 21637