Liquid drainage in inclined packed beds – Accelerating liquid draining time via column tilt


Liquid drainage in inclined packed beds – Accelerating liquid draining time via column tilt

Assima, G. P.; Hamitouche, A.; Schubert, M.; Larachi, F.

The dynamics of liquid drainage in inclined packed beds was studied experimentally using electrical capacitance tomography. The evolution of textural flow regimes and liquid saturation profiles were monitored as a function of bed tilt angle and bed height. Film and droplet textural regimes were discriminated during bed drainage tests. They consisted of a rapid step discharging, virtually at constant flow rate, ca. 80% of the poral dynamic liquid followed by a slower step of partially-saturated pores discharging the remaining 20%. The drainage time was markedly reduced upon tilting the column resulting ultimately in virtually bed-length independent drainage times. Bed inclination reduced the droplet paths to the vessel wall, stimulating migration and coalescence of liquid droplets towards the lowermost area of the column cross-section. This ensured sufficient hydraulic pressure nearby the high-porosity wall area to maintain enhanced liquid outflows. As a prospective process intensification artifice, inclining packed beds way exhibit superior advantage in stimulating drainage of tall vessels especially if emergency circumstances arise.

Keywords: Liquid drainage; static inclined packed bed; electrical capacitance tomography; liquid saturation; film and droplet texture

Permalink: https://www.hzdr.de/publications/Publ-21962
Publ.-Id: 21962