18F-Radiolabeling of Second Generation EphB4 Inhibitors Based on Bis-anilinopyrimidines


18F-Radiolabeling of Second Generation EphB4 Inhibitors Based on Bis-anilinopyrimidines

Mamat, C.; Wiemer, J.; Mosch, B.; Pietzsch, J.; Steinbach, J.

Objectives: Ephrins and its Eph receptors are dysregulated in several human tumor entities including malignant melanoma. In this regard, the EphB4/ephrinB2 system seems to play a major role in melanoma angiogenesis [1].
Thus,we developed a fluorine-18-containing peptide [2] extracellularly binding to EphB4 and a small 18F-labeled molecule which intracellularly binds to the EphB4 kinase domain with high affinity [3] in the past. However, the results showed low binding/uptake in A375EphB4 melanoma cells in vitro and in vivo. Therfore, a “second generation” lead structure based on bis-anilinopyrimidines (IC50 = 1.3 nM) [4] was chosen for novel EphB4-targeted radioligands.
Methods: The lead compound is based on two substructures (part A and B) which were synthesized independently. Two positions of the original inhibitor for the best position of the radiolabel were figured out using docking studies. Based on this, references 2 and 4 as well as precursors 1 and 3 were obtained. In order to introduce [18F]fluoride by ring opening, precursors 1 and 3 were prepared as azetidinium mesylates and lead to high RCYs.
The radiolabeling was done in anhydrous acetonitrile for 30 min at 100°C. Afterwards, the EOE protecting group, which is mandatory for the successful introduction, was cleaved under acidic conditions. The subsequent purification should be easy done by cartridges due to the ionic nature of the precursors [5].
Results: Interestingly, radiofluorination of the first precursor 1 did not lead to the desired tracer [18F]2. The delocalization of the positive charge over both aromatic rings might be the reason for this result. On the other hand, radiofluorination of diazaspirononane precursor 3 was successful and gives the desired [18F]4 in a radiochemical yield of 34% (n.d.c.) and high purity (>95%).
Conclusions: [18F]4 as novel potential EphB4-targeted radioligand based on the bis-anilinopyrimidine scaffold has been successfully synthesized and radiolabeled. Ongoing work is focused on the alternative preparation of radiotracer [18F]2 and on the biological evaluation of both radiotracers to be a suitable target for diagnostic applications.
References
[1] Mosch, B. et al. (2010), J. Oncol., DOI: 10.1155/2010/135285,
[2] Pretze, M., et al. (2013) ChemMedChem, 8, 935–945,
[3] Mamat, C., et al. (2012) ChemMedChem, 7, 1991–3002,
[4] Bardelle, C., et al. (2010) Bioorg. Med. Chem. Lett., 20, 6242–6245,
[5] Grosse-Gehling, P., et al. (2011) Radiochim. Acta 99, 365–373

  • Poster
    21st International Symposium on Radiopharmaceutical Sciences (ISRS), 26.-31.05.2015, Columbia/Missouri, USA
  • Open Access Logo Abstract in refereed journal
    Journal of Labelled Compounds and Radiopharmaceuticals 58(2015), S166
    DOI: 10.1002/jlcr.3302_2

Permalink: https://www.hzdr.de/publications/Publ-22086
Publ.-Id: 22086