Parameter-free determination of the exchange constant in thin films using magnonic patterning


Parameter-free determination of the exchange constant in thin films using magnonic patterning

Langer, M.; Wagner, K.; Sebastian, T.; Hübner, R.; Grenzer, J.; Wang, Y.; Kubota, T.; Schneider, T.; Stienen, S.; Linder, J.; Lenz, K.; Linder, J.; Takanashi, K.; Arias, R.; Fassbender, J.

An all-electrical method is presented to determine the exchange constant of magnetic thin films using ferromagnetic resonance. For films of 20 nm thickness and below, the determination of the exchange constant A, a fundamental magnetic quantity, is anything but straightforward. Among others, the most common methods are based on the characterization of perpendicular standing spin-waves. These approaches are however challenging, due to (i) very high energies and (ii) rather small intensities in this thickness regime. In the presented approach, surface patterning is applied to a permalloy (Ni80Fe20) film and a CFMS (Co2Fe0.4Mn0.6Si) Heusler compound. Acting as a magnonic crystal, such structures enable the coupling of backward volume spin-waves to the uniform mode. Subsequent ferromagnetic resonance measurements give access to the spin-wave spectra free of unquantifiable parameters, and thus, to the exchange constant A with high accuracy.

Related publications

Permalink: https://www.hzdr.de/publications/Publ-22326
Publ.-Id: 22326