Imaging of tumour hypoxia and metabolism in patients with head and neck squamous cell carcinoma.


Imaging of tumour hypoxia and metabolism in patients with head and neck squamous cell carcinoma.

Zegers, C. M.; van Elmpt, W.; Hoebers, F. J.; Troost, E. G.; Öllers, M. C.; Mottaghy, F. M.; Lambin, P.

BACKGROUND:

Tumour hypoxia and a high tumour metabolism increase radioresistance in patients with head and neck squamous cell carcinoma (HNSCC). The aim of this study was to evaluate the correlation between hypoxia ([18F]HX4 PET) and glucose metabolism ([18F]FDG PET) molecular imaging.
MATERIAL AND METHODS:

[18F]HX4 and [18F]FDG PET/CT images of 20 HNSCC patients were acquired prior to (chemo)radiotherapy, in an immobilisation mask, with a median time interval of seven days (NCT01347281). Gross tumour volumes of the primary lesions (GTVprim) and pathological lymph nodes (GTVln) were included in the analysis. [18F]FDG PET/CT images were rigidly registered to the [18F]HX4 PET/CT images. The maximum and mean standardised uptake values (SUVmax, SUVmean) within both GTVs were determined. In addition, the overlap was compared between the [18F]HX4 high volume ([18F]HX4 HV) with a tumour-to-muscle ratio > 1.4 and the [18F]FDG high volume ([18F]FDG HV) with an SUV > 50% of the SUVmax. We report the mean± standard deviation.
RESULTS:

PET/CT scans including 20 GTVprim and 12 GTVlnwere analysed. There was a significant correlation between several [18F]FDG and [18F]HX4 parameters, the most pronounced being the correlation between [18F]FDG HV and [18F]HX4 HV (R = 0.93, p < 0.001). The fraction of the GTVprim with a high HX4 uptake (9 ± 10%) was on average smaller than the FDG high fraction (51 ± 26%; p < 0.001). In 65% (13/20) of the patients, the GTVprim was hypoxic. In four of these patients the [18F]HX4 HV was located within the [18F]FDG HV, whereas for the remaining nine GTVprim a partial mismatch was observed. In these nine tumours 25 ± 21% (range 5-64%) of the HX4 HV was located outside the FDG HV.
CONCLUSIONS:

There is a correlation between [18F]HX4 and [18F]FDG uptake parameters on a global tumour level. In the majority of lesions a partial mismatch between the [18F]HX4 and [18F]FDG high uptake volumes was observed, therefore [18F]FDG PET imaging cannot be used as a surrogate for hypoxia. [18F]HX4 PET provides complementary information to [18F]FDG PET imaging.

Permalink: https://www.hzdr.de/publications/Publ-22469
Publ.-Id: 22469