The precession dynamo experiment at HZDR


The precession dynamo experiment at HZDR

Giesecke, A.; Gundrum, T.; Herault, J.; Stefani, F.; Gerbeth, G.

In a next generation dynamo experiment currently under development at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a fluid flow of liquid sodium, solely driven by precession, will be considered as a possible source for magnetic field generation. The experiment is mainly motivated by alternative concepts for astrophysical dynamos that are based on mechanical flow driving. For example, it has long been discussed whether precession may be a complementary power source for the geodynamo (Malkus, Science 1968) or for the ancient lunar dynamo due to the Earth-driven precession of the lunar spin axis (Dwyer, Nature 2011).

We will present the current state of development of the dynamo experiment together with results from non-linear hydrodynamic simulations with moderate precessional forcing. Our simulations reveal a non-axisymmetric forced mode with an amplitude of up to one fourth of the rotation velocity of the cylindrical container confirming that precession provides a rather efficient flow driving mechanism even at moderate precession rates.

More relevant for dynamo action might be free Kelvin modes (the natural flow eigenmodes in a rotating cylinder) with higher azimuthal wave number. These modes may become relevant when constituting a triadic resonance with the fundamental forced mode, i.e., when the height of the container matches their axial wave lengths. We find triadic resonances at aspect ratios close to those predicted by the linear theory except around the primary resonance of the forced mode. In that regime we still identify free Kelvin modes propagating in retrograde direction but none of them can be assigned to a triade.

Our results will enter into the development of flow models that will be used in kinematic simulations of the electromagnetic induction equation in order to determine whether a precession driven flow will be capable to drive a dynamo at all and to limit the parameter space within which the occurrence of dynamo action is most promising.

Keywords: Dynamo; Dresdyn; Precession

  • Poster
    AGU Fall Meeting 2015, 13.-18.12.2015, San Francisco, USA
  • Open Access Logo Contribution to proceedings
    AGU Fall Meeting 2015, 13.-18.12.2015, San Francisco, USA

Permalink: https://www.hzdr.de/publications/Publ-22477
Publ.-Id: 22477