Applications of Ultrasonic Doppler Velocimetry to flow measurements in hot liquid metals


Applications of Ultrasonic Doppler Velocimetry to flow measurements in hot liquid metals

Eckert, S.; Franke, S.; Gundrum, T.; Gerbeth, G.; Willemetz, J.-C.

The successful application of the ultrasound Doppler method at hot channel flows by means of commercial high temperature probes is presented. To obtain sufficient Doppler signals, different problems have to be solved: the transmission of the ultrasonic beam through the channel wall made of stainless steel, the acoustic coupling between the transducer and the channel wall, and the wetting of the inner surface of the wall by the liquid metal, respectively. An integrated sensor concept and method are figured out to meet these requirements. The feasibility of this sensor concept is demonstrated at experiments in metallic melts at temperatures up to 230°C. Measurements are performed at a circular channel flow at the LIMMCAST facility at HZDR applying an eutectic bismuth-tin alloy. In addition, a lead-bismuth flow in a rectangular channel profile measured at the METAL:LIC loop at the Institute of Physics Riga (IPUL) is presented in this report.

Keywords: Flow measurements; ultrasound Doppler method; liquid metal; channel flow; high temperature melts

  • Lecture (Conference)
    8th International Conference on Electromagnetic Processing of Materials, EPM 2015, 12.-16.10.2015, Cannes, France
  • Contribution to proceedings
    8th International Conference on Electromagnetic Processing of Materials, EPM 2015, 12.-16.10.2015, Cannes, France, 978-2-9553861-0-1, 495-498

Permalink: https://www.hzdr.de/publications/Publ-22663