Relaxation dynamics in graphene studied by THz radiation from the free-electron laser FELBE


Relaxation dynamics in graphene studied by THz radiation from the free-electron laser FELBE

Winnerl, S.

The free-electron laser FELBE, which is operated as a user facility, provides tunable radiation in the mid infrared and terahertz spectral range (wavelength: 4 – 230 µm) in form of ps pulses. It is driven by a superconducting accelerator that enables continuous pulsing operation at a repetition rate of 13 MHz, making it highly attractive for many experiments. We briefly review a few types of experiments including non-perturbative nonlinear spectroscopy and near-field microscopy on systems like excitons in semiconductor quantum wells or electrons confined in quantum dots. Mainly we discuss time-resolved spectroscopy on graphene and in particular Landau quantized graphene. Here evidence for extremely efficient Auger scattering is found that can actually deplete a level that at the same time is optically pumped.

Keywords: Graphene; ultrafast dynamics; FEL

Related publications

  • Lecture (others)
    Semninar an der Uni Manchester, 25.11.2015, Manchester, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-22991
Publ.-Id: 22991