Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy


Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy

Zatsepin, A. F.; Buntov, E. A.; Mikhailovich, A. P.; Slesarev, A. I.; Schmidt, B.; von Czarnowski, A.; Fitting, H. J.

As an example of thin silica films, 30 nm SiO2-Si heterostructures implanted with Ge+ ions (10(16) cm(-2) fluence) and rapid thermally annealed (RTA) at 950 degrees C are studied by means of optically stimulated electron emission (OSEE) in the spectral region of optical transparency for bulk silica. Quartz glass samples were used as references. Experimental data revealed a strong dependence between electron emission spectral features and RTA annealing time. The spectral contributions of both surface band tail states and interband transitions were clearly distinguished. The application of emission Urbach rule as well as Kane and Passler equations allowed to analyze the OSEE spectra at different optical excitation energy ranges and to retrieve the important microstructural and energy parameters. The observed correlations between parameter values of Urbach- and Kane-related models suggest the implantation-induced conversion of both the vibrational subsystem and energy band of surface and interface electronic states.

Keywords: Surface states; Relaxation; Thin films; Ion implantation; Electron emission; Energy structure

Related publications

Permalink: https://www.hzdr.de/publications/Publ-23100
Publ.-Id: 23100