Topological Spin Textures as Emitters for Multidimensional Spin Wave Modes


Topological Spin Textures as Emitters for Multidimensional Spin Wave Modes

Sluka, V.; Weigand, M.; Kakay, A.; Schultheiss, K.; Erbe, A.; Tyberkevych, V.; Slavin, A.; Deac, A.; Lindner, J.; Fassbender, J.; Raabe, J.; Wintz, S.

The investigation of propagating spin waves is a key topic of magnetism research. For the excitation of spin waves with short wavelengths, it was typically necessary to either use transducers with sizes on the order of the desired wavelengths (striplines or point-contacts) or to generate those spin waves parametrically by a double-frequency spa- tially uniform microwave signal. Only recently, a novel mechanism for the local excitation of spin waves has been discovered, which over- comes the wavelength limit given by the minimum patterning size. This method utilizes the translation of natural topological defects, namely the gyration of spin vortex cores. In the present contribution we will show that in a vortex pair system with uniaxial magnetic anisotropy, spin waves of even different symmetries and dimensionalities can be excited.

Keywords: spin wave; multilayers; dipole-exchange; non-reciprocity

  • Lecture (Conference)
    DPG Frühjahrstagung der Sektion kondensierte Materie, 06.-11.03.2016, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23101