Laser proton acceleration of mass-limited-targets of different materials


Laser proton acceleration of mass-limited-targets of different materials

Zeil, K.; Schlenvoigt, H.-P.; Brack, F.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Kraft, S. D.; Sauerbrey, R.; Schramm, U.; Becker, G.; Hornung, M.; Lötzsch, R.; Kaluza, M.; Kämpfer, T.; Reislöhner, J.; Uschmann, I.

Reproducible series of mass-limited targets, manufactured with lithographic techniques, and varying in size, thickness, and mounting geometry were irradiated at the 150 TW Draco Laser facility of the Helmhotz-Zentrum Dresden-Rossendorf with ultrashort (30 fs) laser pulses of intensities of about 8 · 10^20 W/cm^2. A robust maximum energy enhancement of almost a factor of two was found when compared to reference irradiations of plain foils of the same thickness and material. The performance gain was, however, restricted to lateral target sizes of about 50 μm which was attributed to edge and mounting structure influences. In a recent experiments these mass-limited targets of similar size and thickness but different materials, such as Al, Ti and Au were irradiated at the diode-pumped high-power laser system POLARIS at the Helmholtz-Zentrum Jena, in order to study the influence of the material on to the laser proton acceleration performance. The effect of target size dependent bulk heating was studied with characteristic X-ray imaging and spectroscopy.

  • Lecture (Conference)
    Laser Plasma Targetry Workshop, 21.4.2015, Paris, France

Permalink: https://www.hzdr.de/publications/Publ-23219
Publ.-Id: 23219