Pulsed laser melting: A versatile approach for the preparation of dilute ferromagnetic semiconductors


Pulsed laser melting: A versatile approach for the preparation of dilute ferromagnetic semiconductors

Yuan, Y.; Helm, M.; Zhou, S.

Mn doped III-V dilute ferromagnetic semiconductors (DFS) are of great interest in recent decades due to their potential for spintronics [1]. However, the low solid solubility of Mn in III-V semiconductors prohibits the common equilibrium preparation process. For long time, the low-temperature molecule beam epitaxy (LT-MBE) has been the only method to obtain DFS. The technical challenges in LT-MBE result in the fact that GaMnAs (and its alloys with low concentration of phosphorus or indium) is the only available DFS.
In our work, making the full use of ion implantation combined with pulsed laser melting, we have extended the family of Mn doped III-V DFSs. All specimens exhibit the epitaxial structure and pronounced uniaxial magnetic anisotropy. Particularly, we have prepared InMnAs with both high Curie temperature and perpendicular magnetic anisotropy, which is difficult to prepare by LT-MBE due to many n-type defects [3], as well as GaMnP [4] and InMnP [5] which have only been prepared by ion implantation up to now. When compared with LT-MBE, this approach combining ion implantation and pulsed laser melting brightens the future of III-Mn-V DFS by two aspects: (1) Its efficiency and reproducibility make the possibility of the large-scale production in industry; (2) The introduction of new materials (GaMnP and InMnP) provides a more complete platform for understanding the DFS family.

[1]. T. Dietl et al., Rev. Mod. Phys., 86, 187-251 (2014)
[2]. D. Bürger et al., Phys. Rev. B, 81, 115202 (2010)
[3]. Y. Yuan et al., J. Phys. D: Appl. Phys. 48, 235002 (2015)
[4].Y. Yuan et al., IEEE Trans. Mag. 50, 2401304 (2014)
[5]. M. Khalid et al., Phys. Rev. B, 89, 121301(R) (2014)

Related publications

  • Lecture (Conference)
    EMRS 2016 Spring Meeting, 02.-06.05.2016, Lille, France

Permalink: https://www.hzdr.de/publications/Publ-23657
Publ.-Id: 23657