BEMER electromagnetic field therapy reduces cancer cell radioresistance by enhanced ROS formation and induced DNA damage


BEMER electromagnetic field therapy reduces cancer cell radioresistance by enhanced ROS formation and induced DNA damage

Storch, K.; Dickreuter, E.; Artati, A.; Adamski, J.; Cordes, N.

Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both a better molecular understanding of tumor biology and an intensive consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is clearly underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One intensively investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has evidently been demonstrated by a unique EMF pattern. Open remained whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the specific BEMER EMF pattern and clarify the application areas for human disease.

Keywords: Magnetic field therapy; radiotherapy; cancer; ROS

Permalink: https://www.hzdr.de/publications/Publ-23852
Publ.-Id: 23852