Time-Resolved Two Million Year Old Supernova Activity Discovered in the Earth’s Microfossil Record


Time-Resolved Two Million Year Old Supernova Activity Discovered in the Earth’s Microfossil Record

Bishop, S.; Ludwig, P.; Egli, R.; Chernenko, V.; Deveva, B.; Faestermann, T.; Famulok, N.; Fimiani, L.; Gomez, J.; Hain, K.; Korschinek, G.; Hanzlik, M.; Merchel, S.; Rugel, G.

Massive stars (M≥M⊙), which terminate their evolution as core collapse supernovae, are theoretically predicted to eject >10−5M⊙ of the radioisotope 60Fe (t1/2=2.6 Ma). If such an event occurs sufficiently close to our solar system, traces of the supernova debris could be deposited on Earth. Herein, we report a time-resolved 60Fe signal residing, at least partially, in a biogenic reservoir. Using accelerator mass spectrometry, this signal was found through the direct detection of live 60Fe atoms contained within secondary iron-oxides, among which are magnetofossils; the fossilized chains of magnetite crystals produced by magnetotactic bacteria. The magnetofossils were chemically extracted from two Pacific Ocean sediment drill cores. Our results show that the 60Fe signal onset occurs around 2.6−2.8 Ma, near the lower Pleistocene boundary, terminates around 1.7 Ma, and peaks at about 2.2 Ma.

Keywords: accelerator mass spectrometry; AMS

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    2016 Carpathian Summer School of Physics, 26.06.-09.07.2016, Sinaia, Romania

Downloads

Permalink: https://www.hzdr.de/publications/Publ-23867