Structural information from total scattering on thorium/silica nanoparticles


Structural information from total scattering on thorium/silica nanoparticles

Hennig, C.; Weiss, S.; Ikeda, A.; Scheinost, A.; Zänker, H.

Nanoparticles may play a role in environmental migration of heavy metals. In case of absent Bragg reflections in diffraction pattern of nanoparticles with strong structural disorder the data can be treated by Fourier-transforming to real space which yield the atomic pair distribution (PDF). Real-space analysis of X-ray scattering data is sensitive to local structure even in case of structural disorder. This technique was used to gain information of the structure of thorium(IV)/silica nanoparticles [1]. Thorium(IV) is able to form meta-stable colloids with silica in aqueous solution at pH  7. The colloid structure can be regarded as amorphous because it shows no long-range order, indicated by the absence of distinct structural periodicity > 4 Å. The internal structure of the colloid particles consists of [Th(O(H))n] polyhedra, n = 8-9, coordinated partly by [SiO4] polyhedra with Th-Si distances of 3.250.02Å, and partly by [Th(O(H))n] polyhedra with Th-Th distances of 3.980.02Å. The near-order coordination shows similarity with that of the orthosilicates thorite, -ThSiO4, and huttonite, -ThSiO4. Supporting XPS analysis of the oxygen bonds revealed the presence of O2, OH and H2O. The colloids can be classified as oxyhydroxo colloids [(Th,Si)On(OH)4-nxH2O]4-2n-(4-n). Silica occurs in the colloid structure either in mononuclear or oligomeric subunits, depending on the Si/Th ratio and the silica precursor formed in the initial solution. Silica is enriched at the colloid surface if the concentration of the initial solutions is increased. The solution behaviour of the particles was analysed by in-situ methods. With rising silica content, the particles change gradually from metal oxide type colloids to silica type colloids, which strongly increase their colloidal stability.

Keywords: nanoparticles; total scattering; atomic pair distribution function

Related publications

  • Poster
    EPDIC 2016 - 14th European Powder Diffraction Conference, 12.-15.06.2016, Bari, Italy

Permalink: https://www.hzdr.de/publications/Publ-23923
Publ.-Id: 23923