Structure, composition and magnetism in FeAl alloys


Structure, composition and magnetism in FeAl alloys

Menendez, E.; Surinach, S.; Baro, M. D.; Liedke, M. O.; Fassbender, J.; Nogues, J.; Sort, J.

Fe1–xAlx alloys with x ranging from roughly 0.35 to 0.5 at. % show an interesting combination of room temperature magnetic and structural properties. Atomically ordered Fe1–xAlx (0.35 ≤ x ≤ 0.5 at. %) alloys are paramagnetic, while atomically disordered Fe1–xAlx (0.35 ≤ x ≤ 0.5 at. %) alloys become ferromagnetic [1]. The transition from the paramagnetic to the ferromagnetic state can be accomplished by different means (e.g., deformation or ion irradiation) and, remarkably, fully reversed upon thermal treatment [2]. Fabrication of Fe1–xAlx (0.35 ≤ x ≤ 0.5 at. %) thin films with controlled microstructure, composition and thickness would turn them into potential candidates to be magnetically patterned for the functioning of devices, such as magnetic storage media or magnetoresistive random access memories [3]. An overwiew of this order-disorder transition by either deformation or ion irradiation in bulk samples will be presented. Particular emphasis will be given to magnetic patterning routes by both local deformation and selective ion irradiation. Finally, our recent results on the preparation of thin films with controlled microstructure, composition and thickness will be outlined.

[1] E. Menéndez et al. New J. Phys. 10 (2008) 103030
[2] E. Menéndez et al. Small 5 (2009) 229
[3] R. Bali et al. Nano Lett. 14 (2014) 435

Keywords: magnetism; FeAl; binary alloys

Related publications

  • Invited lecture (Conferences)
    Frontiers in Materials Processing Applications, Research and Technology, 09.-12.07.2017, Bordeaux, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-24104
Publ.-Id: 24104