Free-surface dynamics in Induction Processing Applications


Free-surface dynamics in Induction Processing Applications

Beckstein, P.; Galindo, V.; Gerbeth, G.

Induction processing technology is widely applied in metallurgical and crystal growth industry where conducting or semi-conducting material is involved. In many applications, alternating magnetic fields which are used to generate heat and force occur together with a free-surface flow. The numerical analysis of such three-dimensional, multi-physical phenomena on industrial scale is still a big challenge.
We present an overview of a novel multi-mesh model to address these kind of coupled problems by means of computational simulations. It is based on the Finite Volume Method (FVM) of the software foam-extend (http://www.foam-extend.org) - an extended version of OpenFOAM (Weller et al, 1998). Our development is motivated by the desire to investigate the so called Ribbon Growth on Substrate
(RGS) process. RGS is a crystallisation technique that allows the production of silicon wafers and advanced metal-silicide alloys (Schönecker et al, 2004) with high volume manufacturing and outstanding material yield.

Keywords: Numerical simulation; coupled multi-physics; free-surface flow; eddy-currents; Ribbon Growth on Substrate process

  • Book chapter
    J. Miguel Nóbrega and Hrvoje Jasak: OpenFOAM® - Selected papers of the 11th Workshop, Cham (ZG) Switzerland: Springer International Publishing AG, 2019, 978-3-319-60845-7, 197-210
    DOI: 10.1007/978-3-319-60846-4
  • Lecture (Conference)
    11th OpenFOAM® Workshop, 26.-30.06.2016, Guimarães, Portugal

Permalink: https://www.hzdr.de/publications/Publ-24282
Publ.-Id: 24282