Dispersion of nanoparticles in steel melt by superimposed steady and alternating magnetic fields


Dispersion of nanoparticles in steel melt by superimposed steady and alternating magnetic fields

Sarma, M.; Miran, S.; Grants, I.; Gerbeth, G.

A strong axial magnetic field is applied during the induction-melting of stainless steel samples with the purpose of dispersing ceramic nano-particles in the melt by acoustic cavitation. The cross product of the axial magnetic field with the high frequency azimuthal induction currents creates an oscillating radial body force that supports an oscillating pressure field (power ultrasound). Acoustic evidence of cavitation onset has been observed. The samples have been inspected by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). It is found that most of the particles have been pushed out of the bulk. Individual inclusions containing intact initial particles are observed. It is assumed that a too high number of large bubbles stemming from excessive porosity of the initial metal-particle mixture have pushed the particles out of the metal.

Keywords: Ultrasound Cavitation; Particle Dispersion; Steel

  • Contribution to proceedings
    International Conference on Heating by Electromagnetic Sources, 24.-27.05.2016, Padova, Italy
    Proceedings of the International Conference on Heating by Electromagnetic Sources

Permalink: https://www.hzdr.de/publications/Publ-24982
Publ.-Id: 24982