Defect-induced magnetism in SiC probed by nuclear magnetic resonance


Defect-induced magnetism in SiC probed by nuclear magnetic resonance

Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y.; Helm, M.; Zhou, S.; Kühne, H.

We give evidence for intrinsic defect-induced bulk paramagnetism in SiC by means of 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part of the NMR Knight shift and the spectral linewidth, follows the Curie law and scales very well with the macroscopic dc susceptibility. In order to quantitatively analyze the NMR spectra, a microscopic model based on dipole-dipole interactions was developed. The very good agreement between these simulations and the NMR data establishes a direct relation between the frequency distribution of the spectral intensity and the corresponding real-space volumes of nuclear spins. The presented approach by NMR can be applied to a variety of similar materials and, thus, opens a new avenue for the microscopic exploration and exploitation of diluted bulk magnetism in semiconductors.

Permalink: https://www.hzdr.de/publications/Publ-25098
Publ.-Id: 25098