Scalable, multi-GPU photon tracing for in-situ X-ray radiation transport in solid density plasmas


Scalable, multi-GPU photon tracing for in-situ X-ray radiation transport in solid density plasmas

Garten, M.; Grund, A.; Huebl, A.; Burau, H.; Widera, R.; Kluge, T.; Fortmann-Grote, C.; Bussmann, M.

We present our scientific roadmap towards in-situ modeling of non-LTE interactions of XFEL type X-rays with solid density plasmas using a symbiosis of our performance portable, open source, 3D3V particle-in-cell (PIC) code PIConGPU and its X-ray tracing prototype ParaTAXIS. Treating radiation transport via various atomic processes will enable us to synthesize detector signals and gain predictive capabilities for upcoming pump-probe experiments at the European XFEL. With the world’s fastest particle-in-cell code PIConGPU and the raw computational power of the largest high performance computers we open up the possibility for large-scale case studies of unprecedented repeatability.

Keywords: ParaTAXIS; PIConGPU; radiation transport; plasma physics; atomic processes

  • Poster
    2017 Joint ICTP-IAEA School on Atomic Processes in Plasmas, 27.02.-03.03.2017, Trieste, Italia

Permalink: https://www.hzdr.de/publications/Publ-25245
Publ.-Id: 25245